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ABSTRACT
With the proliferation of social media, a growing number of users
search for and join group activities in their daily life. This devel-
ops a need for the study on the group identification (GI) task, i.e.,
recommending groups to users. The major challenge in this task is
how to predict users’ preferences for groups based on not only pre-
vious group participation of users but also users’ interests in items.
Although recent developments in Graph Neural Networks (GNNs)
accomplish embedding multiple types of objects in graph-based
recommender systems, they, however, fail to address this GI prob-
lem comprehensively. In this paper, we propose a novel framework
named Group Identification via Transitional Hypergraph Convo-
lution with Graph Self-supervised Learning (GTGS). We devise a
novel transitional hypergraph convolution layer to leverage users’
preferences for items as prior knowledge when seeking their group
preferences. To construct comprehensive user/group representa-
tions for GI task, we design the cross-view self-supervised learning
to encourage the intrinsic consistency between item and group
preferences for each user, and the group-based regularization to
enhance the distinction among group embeddings. Experimental
results on three benchmark datasets verify the superiority of GTGS.
Additional detailed investigations are conducted to demonstrate
the effectiveness of the proposed framework.

CCS CONCEPTS
• Information systems→ Collaborative filtering.
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1 INTRODUCTION
With the development of online shopping, information collection
and decision-making have become essential yet overwhelming for
individual customers. To seek suggestions for reference before pur-
chasing, a growing number of users decide to join groups on online
platforms and communities. For example, an expectant mother
would seek suggestions from other experienced mothers in online
communities. Online groups provide a space for users to discuss
their demands and share their experiences. Moreover, online groups
can affect and develop users’ interests. For example, a group of
movie fans would discuss their anticipated movies, and a group of
video game players would debate whether a newly released game is
worth buying. In terms of platforms, users’ participation and reten-
tion rate can be boosted by the attachment to online groups [52].
Therefore, it improves the long-term stickiness of users to plat-
forms if personalized social groups can be suggested for users. In
this paper, we define this problem as group identification1 (GI) task,
which aims at recommending groups to users.

If regarding users and groups as nodes and their interactions as
edges, we may thus resolve the group identification (GI) task as
predicting edges over the user-group bipartite graph [23, 48]. Then,
existing graph-based recommender systems methods [4, 11, 35, 40]
would be adopted, which predict edges based on interactions in the

1We use group identification rather than group recommendation is because the later
usually refers to recommending items to a group of users.
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User-group edge

a. interaction graph b. user hypergraph
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Figure 1: Toy example of how to construct a GI hypergraph
from user-group-item interaction graph.

graph. However, GI task is far more complex than this because the
group participation of users also depends on the item interests of
users. For instance, a user may join a group because other mem-
bers purchased the item of her interest. Therefore, simultaneously
capturing collaborative signals among users, groups, and items is
necessary for accurate recommendation in GI task.

The recent developments of graph neural networks (GNNs) have
achieved great success in embedding multiple types of nodes in
graph-based recommender systems [14, 41, 42, 44, 46]. To name a
few, HetGNN [49] integrates Bi-LSTM [12] to capture both structure
and content heterogeneity in graphs. GTN [47] learns from a soft
selection of edge types and composite relations in heterogeneous
graphs through generative meta paths. HGT [13] proposes heteroge-
neous mutual attention to characterize the attention over different
types of edges for modeling heterogeneity. However, edges in most
existing graphs only characterize the pair-wise semantics, which
contradicts the fact that users join a group as a unified whole. To be
more specific, a group is a union of all users in this group. A new
user joins this group because of his or her potential relationships
with all users in the groups. In this sense, pair-wise connections
cannot explicitly express the union semantics in groups.

To this end, we adopt hypergraphs [7, 54] for GI task, where
hyperedges connect multiple nodes synchronously. We illustrate a
toy example of the hypergraph construction for GI task in Figure 1.
We construct a GI hypergraph from a user-item-group interaction
graph. The hyperedges are items and groups, which are represented
as solid and dash lines in Figure 1(b), respectively. The hypergraph
structure intrinsically reflects the union semantics of users. For
example, the bottom purple triangular in the interaction graph de-
notes a group, which connects to three users through three edges,
whereas, in the GI hypergraph, we convert this group to a hyper-
edge, denoted as purple dashline, which synchronously connects
three nodes, and thus representing the union of three users.

However, previous hypergraph convolution is defective in prop-
agating information on hypergraphs, although it has been widely
applied to aggregate information in recommender systems [14, 46].
In previous methods, the information from nodes in a hypergraph
is aggregated to hyperedges and then directly aggregated back to
those nodes by hypergraph convolution. They neglect the intrinsic

hyperedge information during aggregation, thus being suboptimal
for information propagation. For example, if we construct hyper-
edges to connect the groups joined by the same users in GI problem,
previous hypergraph convolution only builds the representations of
those groups based on their member composition, but completely
ignores the item preferences of their members. Nonetheless, in most
e-commercial platforms, the content of a group is up to the popular
items attracting the members. For item-related group identification
without group-item interaction data available, it is challenging to
transmit information on members’ item preferences to groups by
hypergraph learning.

The other challenge in applying hypergraph learning to GI task
is how to harmonize the information learned from different hyper-
edges for the same nodes, i.e., the information from different views
of hypergraphs. For example, although a user’s item preferences
and group preferences can be modeled through item and group
hyperedges discriminatively in the user hypergraph, without inte-
grating these two types of preferences coherently, the recommender
system is still unable to deduce her group preferences based on her
item preference. We argue that it is crucial to maintain the intrin-
sic consistency between users’ item and group preferences during
hypergraph learning. Given no available group-item interaction,
this consistency inside each user can be regarded as an alternative
group-item connection, which provides necessary information for
recommending groups to users.

To this end, we propose a novel framework called Group Identi-
fication via Transitional Hypergraph Convolution with Graph Self-
supervised Learning (GTGS). GTGS is a hypergraph neural network
built upon one user-view group hypergraph, and two item-view
and group-view user hypergraphs. We propose a novel transitional
hypergraph convolution (THC) layer to generalize existing hyper-
graph convolution. THC layer endows the model with the ability
of characterizing the both hyperedge information propagated from
nodes and intrinsically existing in hyperedges. In this way, the
intrinsic hyperedge information on users’ preferences for items is
transmitted to groups. Regarding learning user representation from
both group-views, we leverage contrastive self-supervised learn-
ing (SSL) to encourage the consistency between item and group
preferences of users. After convolution on item-view and group-
view user hypergraphs, we obtain two views of embeddings for all
users. Then, we develop a novel cross-view self-supervised learn-
ing (CSSL) based on InfoNCE contrastive loss [10] to maximize the
mutual information between two views of the same user in a self-
supervised manner. Additionally, we propose a new group-based
regularization term to alleviate the embedding collapse issue for
contrastive learning. This group-based regularization is leveraged
to enhance the distinction between different groups for construct-
ing distinguishable group representations. The main contributions
of this paper are summarized as follows:

• We propose a novel framework GTGS, a model based on hyper-
graph learning for group identification, which leverages hyper-
edges to express the union semantics in users and groups.

• We devise a novel THC layer to harness the intrinsic information
on hyperedges, which generalizes existing hypergraph convolu-
tion and GCN-based models.
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• We design a novel CSSL paradigm to optimize user and group
representations respectively and propose a group-based regular-
ization to improve the distinction of group embeddings.

• We conduct extensive experiments on three real-world datasets.
The significant improvement of GTGS on all datasets indicates
its superiority in tackling the GI problem.

2 RELATEDWORKS
2.1 Group Recommender Systems
Group recommender systems refer to recommending groups to their
potential members. Traditional group recommender systems apply
various algorithms to recover user-group membership matrices
with available side information. For example, semantic information
from descriptions of groups [5] and visual information from pho-
tos shared by users [33] can be incorporated with a collaborative
filtering framework to perform personalized group recommenda-
tions. User behaviors in different time periods [34, 39], such as
joining groups, can also be leveraged for recommending groups
to users. However, the requirement for side information degrades
the performance of those methods when recommending groups to
users with only interaction information. Some recent works [17, 18]
investigate recommending groups to users with only user-group
interactions , while item interaction information is ignored.

Besides recommending groups to users, the term group recom-
mendation in literature also refers to recommending items to a
group of users [3, 28], which differs from the focus in this paper.

2.2 Hypergraph Learning Based
Recommendation

Inspired by the success of hypergraph learning in other graph-based
tasks [8, 9], the hypergraph is also introduced in recommender
systems due to its capability of modeling complex high-order de-
pendencies through hyperedge-node connections. HGCN-CC [46]
improves HGCN [8] with feature crossing and contrastive learning
for the user-item recommendation. DHCF [14] utilizes residual con-
nections to consider original features and aggregated related repre-
sentations simultaneously during modeling the hybrid multi-order
correlations between users and items. Hypergraphs can also be con-
structed based on side information in recommender systems. As an
early attempt, MRH [2] builds hyperedges among users, music, and
the music tag to construct a hypergraph for music recommendation.
MHCN [44] proposes a multi-channel hypergraph convolutional
network to enhance social recommendation by leveraging high-
order user-user relations. HMF [53] leverages hypergraph structure
to describe the interior relation of the social network.

To the best of our knowledge, no previous work has applied
hypergraph learning for group recommender systems. Since the
hyperedge simultaneously connecting multiple nodes is a natural
structure for handling groups of users in recommender systems,
some recent works leverage hypergraph learning to predict poten-
tial items for given groups of users. HHGR [51] designs hierarchical
hypergraph convolution on fine- and coarse-grained hypergraphs.
HCR [15] defines an overlap graph of a hypergraph to learn the
group’s general preference independent of its members’ interests.

2.3 Recommendation with Self-Supervised
Learning

Self-supervised learning is an emerging paradigm to generate addi-
tional supervised signals for improving representation quality. It
has reached most recommendation topics and achieved remarkable
success. Recommendation models with self-supervised learning can
be generally categorized into two branches according to the type of
self-supervised learning task: generative methods and contrastive
methods. Inspired by the masked language models [6], generative
methods learn by reconstructing the input data from its corrupted
version [29, 30]. Contrastive methods compare multiple views of
input data and contrast positive samples with negative samples to
learn discriminative representations [35, 38].

The construction of high-quality self-supervised signals plays a
pivotal role in self-supervised learning [31].Most previousworks [30,
35, 43] augment the data to create multiple views as self-supervised
signals. However, complex data augmentation cost additional space
and time Recent works [21, 45] verify that common data augmenta-
tions can bring negative impacts for graph-based tasks. In this work,
we design two novel augmentation-free self-supervised learning
paradigms to optimize user and group representations.

3 PRELIMINARIES
In this section, we first formulate the problem of group identification
(GI), then introduce three hypergraphs for GI and their construction.

Definition 1. (Ranking-based Group Identification). Given
three disjoint node sets, including a user set U, a group set G and an
item set I, and the interactive edges, i.e., user-group edges 𝐸U,G and
user-item edges 𝐸U,I , an interaction graph is defined as T = (𝑉 , 𝐸),
where𝑉 = U∪I∪G and 𝐸 = 𝐸U,G∪𝐸U,I . The group identification
(GI) for a user 𝑢 is to predict a ranking list of groups {𝑔1, 𝑔2, . . . , 𝑔𝑘 },
with which this user has no interactions in the graph T .

In other words, we recommend a list of groups that this user 𝑢
is of potential interest in GI. Note that we distinguish the group as
another entity rather than a simple union of users due to its special
characteristics, e.g., group information.

Definition 2. (User-view Group Hypergraph). The user-view
group hypergraph of an interaction graph T is denoted as T𝑢

𝑔 =

(G, E𝑢 ), where groups G are nodes and E𝑢 are hyperedges. We let
users be hyperedges. An incidence matrix H ∈ {0, 1} | G |× |U | is used
to represent connections among group nodes.

Analogously, we define the Group-view User Hypergraph
and Item-view User Hypergraph, denoted as T𝑔

𝑢 and T 𝑖
𝑢 , respec-

tively, whose nodes are users and hyperedges are groups and items,
respectively. T𝑔

𝑢 and T 𝑖
𝑢 are associated with two incidence matrices,

denoted as U𝑔 ∈ {0, 1} |U |× |G | and U𝑖 ∈ {0, 1} |U |× |I | , respectively.
Figure 2 presents an example of constructing the above hypergraphs
from an interaction graph.

4 METHODS
In this section, we present the proposed GTGS model for the group
identification task. The framework of GTGS is shown in Figure 2.
We start by introducing all embedding layers to be trained in this
framework. Thereafter, we demonstrate how to leverage users’
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preferences for items as prior knowledge in group representation
learning. Specifically, we adopt a THC layer to integrate users’ pref-
erences learned in the item-view user hypergraph into hyperedge
features, and then aggregate these hyperedge features to group
nodes. We further design SSL tasks to optimize user and group
representations respectively. We propose CSSL to encourage the
intrinsic consistency between item-view and group-view user em-
beddings, and leverage group-based regularization to enhance the
distinction between different group embeddings. Lastly, we conduct
theoretical analyses on THC and prove it as a general case of graph
convolution and hypergraph convolution.

4.1 Embedding layer
Wemaintain an embedding layer E ∈ R𝑑×(2 |U |+|G | ) , where 𝑑 is the
feature dimension and columns represent all trainable embeddings
for users and groups in the three hypergraphs. Each user has two
embeddings corresponding to the item-view and group-view user
hypergraphs. We denote the initial item-view user embedding as
E𝑖,(0)u , the initial group-view user embedding as E𝑔,(0)u , and the
initial group embedding as E(0)g .

4.2 Transitional Hypergraph Convolution
Hypergraph convolution is widely used for information propaga-
tion among nodes through hyperedges in hypergraphs. However,
existing hypergraph convolution methods directly aggregate the
information from neighbors connected by hyperedges, while ne-
glecting intrinsic information of hyperedges. Hence, we devise a
novel Transitional Hypergraph Convolution (THC) layer to resolve
this issue. Specifically, before information propagated from node to
node, we first construct the hyperedge information from connected
nodes. We denote this initial step as information construction of
THC layer. Then, we propose an additional transition step, which
enables the fusion of hyperedge information from other resources.
Finally, in the final propagation step, fused information is aggre-
gated to nodes for inference of node embedding. Next, to be more
concrete, we present the calculation details of a THC layer over a
user-view group hypergraph. The illustration is in Figure 2(b).

4.2.1 Information Construction. In the user-view group hyper-
graph, group nodes are connected by user hyperedges. Therefore,
we construct the information of a hyperedge by aggregating embed-
dings of all nodes connected by this hyperedge, which is illustrated
as in 1○ of Figure 2(b). The information construction of a hyperedge
𝜖 is formulated as follows:

t(𝑙 )𝜖 =
1

|N𝜖 |
∑︁

𝑔′∈N𝜖

e(𝑙 )
𝑔′ , (1)

where t(𝑙 )𝜖 denotes temporary embedding of the hyperedge 𝜖 , N𝜖

is the set of group nodes connected by this hyperedge, and e(𝑙 )
𝑔′

is the embedding of those group nodes as input of the 𝑙-th THC
layer. Eq. (1) represents constructing the hyperedge information
via mean-pooling of its connected nodes. We leave other variants
such as max-pooling to future work.

4.2.2 Instrinsic Information Transition. In this step, we fuse the
constructed information with intrinsic information of a hyperedge.

Let the intrinsic embedding of a hyperedge 𝜖 be c𝜖 , we fuse c𝜖 with
t(𝑙 )𝜖 via a transition layer as follows:

q(𝑙 )𝜖 = Transition(t(𝑙 )𝜖 , 𝛾c(𝑙 )𝜖 ), (2)

where q(𝑙 )𝜖 is the fused hyperedge embedding, and 𝛾 is a scalar
hyper-parameter to control the transition intensity. For example,
a hyperedge in user-view group hypergraph is a user. Hence, the
intrinsic information of the hyperedge is from the user embedding.
In this paper, we use add operation as the transition layer and
leave the investigation of other variants to future work. In 2○ of
Figure 2(b), we demonstrate this step via adopting the intrinsic in-
formation of user hyperedges from the item-view user embeddings,
i.e., C(𝑙 ) = E𝑖,(𝑙+1)u , which will be introduced later.

4.2.3 Final Aggregation. We learn the group embedding by aggre-
gating the fused embedding from all its connected hyperedges. For
a target group 𝑔, the aggregation step is formulated as follows:

e(𝑙+1)𝑔 =
1

|N𝑔 |
∑︁
𝜖∈N𝑔

q(𝑙 )𝜖 , (3)

where e(𝑙+1)𝑔 denotes the output group embedding, N𝑔 is the set
of hyperedges connected to this group, and q(𝑙 )𝜖 is the fused em-
bedding of its connected hyperedges from Eq. (2). Again, we only
investigate themean-pooling aggregation of hyperedge information
and leave other variants to future study. This step is demontrated
in Figure 2(b) 3○.

4.2.4 THC in Matrix Form. . To offer a holistic view of convolution,
we formulate the matrix form of transitional hypergraph convolu-
tion (equivalent to Eq. (1)-(3)) as:

E(𝑙+1)g = THC(E(𝑙 )g ,H, 𝛾C(𝑙 )
𝜖 )

= D−1H · Transition(B−1H⊤E(𝑙 )g , 𝛾C(𝑙 ) ),
(4)

where E(𝑙 )g is the input embedding from 𝑙-th layer,H is the incidence

matrix, C(𝑙 ) denotes intrinsic hyperedge information, and E(𝑙+1)g is
the output.D is the degree matrix of nodes and B is degree matrix of
hyperedges for normalization. THC layer is a more general version
of hypergraph convolution, which degrades to existing hypergraph
convolution [44] if let 𝛾 = 0 and dismiss the Transition layer.

4.3 Cross-view Self-supervised Learning
Recall that we construct two user hypergraphs, i.e., item-view and
group-view user hypergraph. In this section, we introduce how to
infer user embeddings from both hypergraphs and how to harness
them via contrastive self-supervised learning simultaneously.

4.3.1 User Embeddings. Weemploy𝐿 THC layers on both item-view
and group-view user hypergraphs to infer the item-view user em-
beddings E𝑖,(𝐿)𝑢 and the group-view user embeddings E𝑔,(𝐿)u as:

E𝑖,(𝐿)u = THC𝐿 (E𝑖,(0)u ,U𝑖 , 0),

E𝑔,(𝐿)u = THC𝐿 (E𝑔,(0)u ,U𝑔, 0),
(5)

where U𝑖 and U𝑔 are incidence matrices. E𝑖,(0)u and E𝑔,(0)u are the
input user embeddings. Note that here we eliminate the intrinsic
hyperedge information for both views by setting the 𝛾 = 0 in Eq.(2),
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Figure 2: (a) The overall framework of GTGS. First, we construct three hypergraphs and apply THC layers to them. Next, we
conduct group-based regularization on the output group embeddings, and employ cross-view SSL to optimize item-view and
group-view user embeddings. At last, the inner product of group embedding and item-view user embedding is calculated for
prediction; (b) the illustration of the Transitional Hypergraph Convolution (THC) layer.

which retrains simplicity of the model. Intuitively, after 𝐿 THC
layer, the item-view and group-view user embedding characterize
the collaborative signals in user-item interaction and user-group
interactions, respectively. In the following paper, we ignore the
superscript (𝐿) for legibility and simply use E𝑖u and E𝑔u to denote
the final embedding from item-view and group-view, respectively.
We calculate the final user embeddings via a weighted sum the
embeddings from two views as:

E𝑢 = 𝛽E𝑖u + (1 − 𝛽)E𝑔u, (6)

where 𝛽 is a hyper-parameter to balance two views.

4.3.2 Cross-view Self-supervised Learning. Though we represent
the final user embedding as the sum of two views, the consistency
between the two views is however neglected. The intuition is that
we should encourage the model to recommend similar groups to
users who prefer similar items, and vice versa. We devise a Cross-
view Self-Supervised Learning (CSSL) task to enhance the consis-
tency between item-view and group-view user representations as
shown in Figure 2(a). To establish consistency between the user
representations under the two views, we deploy the InfoNCE loss
to maximize the mutual information between the two views:

L𝑢𝑠𝑒𝑟
𝑐𝑠𝑠𝑙

=

|U |∑︁
𝑢=0

− log
exp(sim(e𝑖𝑢 , e

𝑔
𝑢 )/𝜏u)∑ |U |

𝑣=0 exp(sim(e𝑖𝑢 , e
𝑔
𝑣))/𝜏u)

, (7)

where sim(·, ·) measures the cosine similarity between two vectors
and 𝜏𝑢 is a temperature hyper-parameter. The item-view embedding
e𝑖𝑢 and group-view embedding e𝑔𝑢 is interpreted as users’ preference
towards items and groups.

This loss function encourages the agreement between the two
views of the same user and the distinction between the two views

of different users. In other words, the consistency of the two views
is maximized for each individual user.

4.3.3 Group-based Regularization. Inspired by recent works [16,
26] investigating the embedding collapse problem in contrastive
learning, we propose a group-based regularization to improve the
distinction of group representations. The reason of the embedding
collapse issue in our loss function Eq. (7) is that the excessive focus
on the closeness of interacted user-group pairs results in a trivial
solution of group embeddings collapsing to users who joined plenty
of groups. Thus, we apply a regularization to encourage all group
embeddings to be uniformly distributed in the space. Concretely,
we propose a new variant of the InfoNCE loss to regularize the
distribution of group embeddings:

L𝑔𝑟𝑜𝑢𝑝
𝑟𝑒𝑔 =

| G |∑︁
𝑔=0

− log
exp(1/𝜏g)∑ | G |

𝑘=0 exp(sim(e𝑔, e𝑘 )/𝜏g)
, (8)

where e𝑔 and e𝑘 are group embeddings learned by the THC layer,
and 𝜏𝑔 is the temperature hyper-parameter. This loss encourages
all the group embeddings to be distinct.

4.4 Prediction and Optimization
For GI task, we conduct prediction on the ranking score 𝑦𝑢,𝑔 of the
user-group pair (𝑢,𝑔), which is calculated by the inner product as:

𝑦𝑢,𝑔 = e𝑢 · e𝑔, (9)

where e𝑢 is final layer user embedding as described in Eq. (6) and e𝑔
is the final layer group embedding as in Eq. (3). Then we adopt the
pairwise Bayesian Personalized Ranking (BPR) loss [27] to optimize
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the prediction:

L𝑏𝑝𝑟 =
∑︁

(𝑢,𝑔,𝑔′ ) ∈D
− log𝜎 (𝑦𝑢,𝑔 − 𝑦𝑢,𝑔′ ), (10)

where D = {(𝑢,𝑔, 𝑔′) |𝑔 ∈ G+
𝑢 , 𝑔

′ ∈ G\G+
𝑢 } is the training data and

group set G+
𝑢 contains all the groups joined by user 𝑢.

Finally, we jointly optimize the recommendation task and the
proposed cross-view self-supervised learning as follows:

L = L𝑏𝑝𝑟 + 𝜆(L𝑢𝑠𝑒𝑟
𝑐𝑠𝑠𝑙

+ L𝑔𝑟𝑜𝑢𝑝
𝑟𝑒𝑔 ) + 𝜆Θ∥Θ∥22, (11)

where 𝜆 is the hyper-parameter to control the strength of SSL, and
Θ is all trainable parameters in the framework, which is regularized
by 𝜆Θ. Adam [19] is chosen as the optimizer.

4.5 Model Comparison
In this section, we compare the proposed THC with convolution
layers in the previous graph and hypergraph convolution based
recommendation methods mathematically. We prove that both hy-
pergraph convolution [44] and GCN [20] are special cases of THC.

4.5.1 THC generalizes Hypergraph Convolution. By eliminating
the non-linear activation and linear transformation for existing hy-
pergraph convolution works [7, 14, 44], we formulate a hypergraph
convolution [44] as:

E(𝑙+1) = D−1H · B−1H⊤E(𝑙 ) . (12)

THC is equivalent to hypergraph convolution if we dismiss transi-
tion layer Transition() and set hyper-parameter 𝛾 = 0 of Eq. (4).

4.5.2 THC generalizes LightGCN. Since graph convolution is a spe-
cial case of hypergraph convolution when each hyperedge connects
only two nodes in hypergraph [1], THC as a general case of hyper-
graph convolution can also be regarded as a general case of graph
convolution. Moreover, THC can be formulated as two consecutive
graph convolution layers when each hyperedge connects multiple
nodes. We use the LGC layer in LightGCN [11] to represent graph
convolution, which is defined as follows:

E(𝑙+1) = (D− 1
2AD− 1

2 )E(𝑙 ) , (13)

where E(𝑙 ) and E(𝑙+1) are the input and output of a graph con-
volution layer, and A is the adjacency matrix reflecting edges. To
be more specific, two consecutive graph convolution layers for
group-user-group information propagation are denoted as follows:

E(𝑙+1)u = (D− 1
2

𝑢 A⊤D
− 1

2
𝑔 )E(𝑙 )g ,

E(𝑙+2)g = (D− 1
2

𝑔 AD
− 1

2
𝑢 )E(𝑙+1)u .

(14)

By combining the matrix forms of the two layers, we obtain updated
group embeddings as follows:

E(𝑙+2)g = (D− 1
2

𝑔 AD
− 1

2
𝑢 ) (D− 1

2
𝑢 A⊤D

− 1
2

𝑔 )E(𝑙 )g

= D−1
𝑔 AD−1

𝑢 A⊤E(𝑙 )g ,

(15)

where A ∈ R |𝐺 |× |𝑈 | represents interactions between users and
groups. Groups sharing a common user are connected together in
the group hypergraph. We have its incidence matrix H = A, node
degree matrix D = D𝑔 and hyperedge degree matrix B = D𝑢 . Thus,
Eq. (15) is equivalent to Eq. (12), which is a special case of THC.

Table 1: The statistics of datasets.

Dataset Steam Beibei Weeplaces
# users 19,608 11,487 8,550
# groups 46,587 4,035 8,535
# items 3,951 13,814 22,357
# user-group edges 105,271 20,972 16,529
# user-item edges 1,209,979 105,210 152,258
Avg. # groups/user 5.37 1.83 1.93
Avg. # users/group 2.26 5.2 1.94
Avg. # items/user 61.71 9.16 18.44
Avg. # users/item 306.25 7.62 6.81

5 EXPERIMENT
5.1 Experimental Setup
5.1.1 Datasets. We conduct experiments on three real-world datasets:
Steam [25], Beibei [50], and Weeplaces [24]. Steam dataset includes
users’ transaction records and the discussion groups they joined on
Steam online game store. Beibei is the largest E-commerce platform
for maternal and infant products in China. It records users’ pur-
chases and groups they join for group buying. Weeplaces dataset
includes users’ group-traveling history and their check-in locations.
The statistics of three datasets are shown in Table 1. For Steam and
Beibei, we randomly select 70% of all groups joined by each user
for training and the remaining 30% for testing. For Weeplaces, the
split ratio is 80% for training and 20% for testing. We further split
20% validation set from the training set for hyper-parameter tuning.
Our source code and the three datasets are released online 2.

5.1.2 Baselines. We compare GTGS with the following baselines:
• LGCN [11]. This is the state-of-the-art recommendation method
based on GCN [20] by removing feature transformation and
nonlinear activation.

• SGL [36]. This recommendation framework performs contrastive
learning on LGCN to augment node representations by leveraging
additional self-supervised signals during training.

• ENMF [4]. It is based on a neural matrix factorization architec-
ture leveraging mathematical optimization to train the model
efficiently without sampling data for recommendation.

• HGNN [7]. It is a method applying hypergraph convolution
on a graph for node representation learning. We calculate inner
production between user nodes and group nodes as the prediction
scores with BPR loss as the objective for recommendation.

• HCCF [37]. In this hypergraph learning based recommendation
method, contrastive learning is applied to jointly capture local
and global collaborative relations.

• DHCF [14]. It introduces hypergraph convolution into dual-
channel learning for recommendation.

• LGCN+. This is a GCN-based recommendation model adapted
for GI task. It consists of two LGCN parts to conduct item-user
and user-group information propagation consecutively.

• HGNN+. This recommendation model is based on HGNN. We
adapt it for GI task by employing hypergraph convolution on
user-item and user-group bipartite graphs successively.

2https://github.com/mdyfrank/GTGS
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Table 2: Performance comparison on three datasets.

Dataset Steam Beibei Weeplaces
Metric R@10 R@20 N@10 N@20 R@10 R@20 N@10 N@20 R@10 R@20 N@10 N@20
LGCN 0.0938 0.1236 0.0734 0.0803 0.1042 0.1329 0.0741 0.0821 0.1176 0.1506 0.0705 0.0790
SGL 0.1290 0.1565 0.0879 0.0856 0.1084 0.1377 0.0779 0.0883 0.1192 0.1486 0.0707 0.0784
ENMF 0.1075 0.1386 0.0774 0.0868 0.1154 0.1560 0.0826 0.0959 0.1310 0.1720 0.0734 0.0854
HGNN 0.0398 0.0515 0.0407 0.0463 0.0945 0.1279 0.0864 0.1070 0.0967 0.1367 0.0468 0.0605
HCCF 0.0765 0.0890 0.0698 0.0771 0.0860 0.1236 0.0586 0.0812 0.0818 0.1200 0.0366 0.0505
DHCF 0.1747 0.2082 0.1549 0.1724 0.0828 0.1261 0.0629 0.0876 0.1080 0.1466 0.0633 0.0780
LGCN+ 0.1019 0.2619 0.0804 0.1745 0.0925 0.1574 0.0698 0.1007 0.1668 0.2490 0.0824 0.1065
GAT 0.1249 0.1329 0.1155 0.1204 0.0860 0.1701 0.1040 0.1142 0.0350 0.0716 0.0175 0.0298
HGNN+ 0.1752 0.1753 0.1985 0.1986 0.1349 0.2003 0.1064 0.1410 0.1500 0.2337 0.0723 0.0956
GTGS 0.2347 0.2903 0.2075 0.2335 0.2125 0.2970 0.1630 0.1931 0.2061 0.3090 0.0994 0.1292
Improv. 33.96% 10.84% 4.53% 17.57% 57.52% 48.28% 53.20% 36.95% 23.56% 24.10% 20.63% 21.31%

• GAT [32]. This work leverages a multi-head self-attention archi-
tecture to capture influences from each node in graph structures.
To adapt it for GI task, we deploy two consecutive graph attention
networks for item-user and user-group information aggregation
and use pair-wise BPR loss as the objective function.

Since those bipartite recommendation baselines are not designed
for graphs with multiple types of interactions, we deploy them with
only user-group interactions such that they are adapted to GI task.

5.1.3 Model Settings. The number of THC layers 𝐿 is set to 1 in
our experiments. Learning rate is set to 0.05 for Steam/Beibei and
0.005 for Weeplaces. We set regularization strength 𝜆𝜃 to 1e-7 for
Beibei/Weeplaces and 1e-5 for Steam. Embedding size 𝑑 is set to 64
for all the datasets. We adopt full-batch training. Early stopping is
utilized in all experiments to cope with the over-fitting problem.

5.1.4 Evaluation Metrics. We evaluate GI task by ranking the test
groups with all non-interacted groups of users. And we adopt
Recall@{10, 20} and NDCG@{10, 20} as evaluation metrics.

5.2 Overall Performance Comparison
Overall comparison results are shown in Table 2. The best results
are in boldface, and the second-best results are underlined. The im-
provement is calculated by subtracting the best performance value
of the baselines from that of GTGS and then using the difference to
divide the former. We summarize the following key observations:

• The proposed GTGS method achieves the best results and out-
performs all the baseline methods by up to 57.52% in the three
datasets. We hypothesize these large stable gains result from the
abundant and balanced user-item and user-group interactions.

• The baselines integrating both user-item and user-group interac-
tion information, such as LGCN+ and HGNN+, are better than
most bipartite recommendation models. It indicates that users’
interest in items is able to benefit group identification as side
information rather than harmful noise in most cases. However,
LGCN+ and GAT are still unable to capture relationships among
multiple users or groups synchronously through hypergraphs,
thus being worse than GTGS. This observation justifies the ne-
cessity of hypergraph learning for GI task.

• Although HGNN+ utilizes hypergraphs to learn user-group and
user-item relations, it models these two types of relations inde-
pendently and neglects the intrinsic consistency between users’
preferences for items and groups. Compared with it, GTGS is
specifically designed for GI task with transitional hypergraph
convolution and cross-view self-supervised learning, which is a
better and more stable framework.

5.3 Ablation Study
5.3.1 Hypergraph construction. We demonstrate the performance
of GTGS with different item-view user hypergraph constructions
on the three datasets in Fig. 3. GTGS utilizes item nodes as hyper-
edge to construct the item-view user hypergraph. In addition, we
investigate three other variants of GTGS: (L) Instead of constructing
the item-view user hypergraph, item information is aggregated to
user nodes through user-item interactions by one GCN layer; (J1)
both item nodes and group nodes are used as hyperedges among
user nodes, and hypergraph convolution is employed on both item
hyperedges and group hyperedges simultaneously; (J2) same as J1,
but hypergraph convolution is first employed on item hyperedges
and then on group hyperedges. We only show the result on NDCG
since the pattern on Recall is the same.
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Figure 3: Performance of GTGS w.r.t. different hypergraph
constructions.

We observe that GTGS performs the best on three datasets. This
justifies the superiority of GTGS with simply item hyperedges that
perform best among all item-view user hypergraph constructions.
The poor performance of L verifies the limitation of bipartite edges
in capturing real-world non-bipartite relations. Since user-item in-
teractions are much denser than user-group interactions in Steam
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dataset, the two-stage hypergraph convolution in J2 is able to dis-
tinguish the information propagated by item and group hyperedges,
which results in better performance than J1. However, given user
nodes have been used as hyperedges in the group hypergraph,
adding group hyperedges to the item-view user hypergraph in-
creases the risk of over-smoothing between users and groups, so
both J1 and J2 are worse than GTGS.

5.3.2 Transitional Hypergraph Convolution Settings. To verify the
effectiveness of THC, we show the performance of GTGS with
and without THC in Fig. 4. For the model without THC, we set
transition intensity 𝛾 = 0 for all THC layers. We can observe that
the performance is consistently improved by THC on all three
datasets. And the improvement is more obvious in the sparser
datasets, such as Beibei and Weeplaces. In these datasets, members’
interests in items are more distinct in each group, thus helping the
model more accurately capture the characteristics of their group.
Therefore, we believe that including users’ item preferences in
group representations by THC is a better way for GI task.
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Figure 4: Performance of GTGS with and without THC.

Table 3: Ablation study on self-supervised learning settings.

Dataset Steam Beibei Weeplaces
Metric R@10 N@10 R@10 N@10 R@10 N@10
w/o SSL 0.2214 0.1829 0.1841 0.1470 0.1821 0.0931
w/o user 0.2242 0.2037 0.1865 0.1367 0.1831 0.0939
w/o group 0.2325 0.1888 0.1900 0.1482 0.1964 0.0989
GTGS 0.2347 0.2075 0.2028 0.1526 0.2061 0.0994

5.3.3 Self-supervised learning settings. Another ablation study is
further made to investigate the effectiveness of self-supervised
learning. We design three different variants of GTGS. 1) w/o SSL is
without both CSSL and group-based regularization during the train-
ing of GTGS, so the model is optimized only by the BPR loss. 2) w/o
user is GTGSwithout the CSSL tomaintain the consistency between
item-view and group-view user representations. And 3) w/o group
is GTGS without the group-based regularization to enhance the
distinction of group representations. The results are demonstrated
in Table 3. We observe that:
• The best setting in general is to apply CSSL and group-based
regularization to optimize both user and group representations.
This verifies the effectiveness of CSSL applied in GTGS.

• Compared with those variants without the CSSL (i.e., w/o SSL and
w/o user in Table 3), adding it to the model consistently improves
the performances in all datasets, which justifies the importance of
maintaining the consistency between item and group preferences
during the user representation learning.

• Removing the group-based regularization will drop the perfor-
mance in NDCG@10 largely in the Steam dataset, which hasmore
groups and denser user-group interactions. This indicates that
distinction among embeddings is crucial for learning represen-
tations of densely connected nodes by hypergraph convolution.
Since the embeddings of connected nodes tend to be close in
the vector space after convolution [22], it is more important
to prevent the features of densely connected nodes from being
excessively similar and indistinguishable in such a dataset.

5.4 Cross-view SSL Analysis
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Figure 5: Average consistency of user embeddings w.r.t CSSL
temperature 𝜏u. Histograms denote performances in Recall.

As aforementioned, CSSL encourages the intrinsic consistency
between item-view and group-view user embeddings for learning
comprehensive user representation. We further analyze the influ-
ences of user embedding consistency on performance.We define the
consistency between item-view and group-view user embeddings
as follows:

Consistency =
E𝑢∼𝑝𝑢𝑠𝑒𝑟 sim(E𝑖,(𝐿)u , E𝑔,(𝐿)u )

E𝑢,𝑣∼𝑝𝑢𝑠𝑒𝑟 sim(E𝑖,(𝐿)u , e𝑖,(𝐿)v )
, (16)

where 𝑝𝑢𝑠𝑒𝑟 (·) is the distribution of user data and sim(·) denotes
the consine similarity. This consistency score is the ratio of the
expected similarity between the two views of a user to the expected
similarity between any two users in the dataset. A larger consis-
tency means that the two views of each user learned by GTGS are
more consistent. Consistency among user representations learned
by CSSL with different temperatures 𝜏𝑢 is shown in Fig. 5 together
with corresponding model performances.

We observe that the model has the best performance when con-
sistency achieves the peak, which indicates that the proposed CSSL
is able to boost recommendation performance by enhancing the
agreement between item-view and group-view user embeddings.
Besides, the relatedness between consistency and performance is
more obvious in smaller Beibei and Weeplaces datasets. Since each
user only interacted with several items in such datasets, her group
preference can be clearly revealed by her interests in items. This
justifies the CSSL in our design.

5.5 Embedding Analysis
We conduct analyses of the group embeddings learned by GTGS
to verify that those embeddings can reflect the user composition
of groups through hypergraph learning. We retrieve all pairs of
groups. We calculate their relatedness and corresponding common
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user ratio. The ratio for each group pair (𝑔𝑎, 𝑔𝑏 ) is computed as:

𝑟𝑎𝑏 =
|N (𝑢 )

𝑔𝑎 ∩ N (𝑢 )
𝑔𝑏

|

|N (𝑢 )
𝑔𝑎 ∪ N (𝑢 )

𝑔𝑏
|
, (17)

where N (𝑢 )
𝑔𝑎 and N (𝑢 )

𝑔𝑏
is the set of users in group 𝑔𝑎 and 𝑔𝑏 , re-

spectively. For a simple illustration purpose, we sort all group pairs
w.r.t. the pair-wise cosine similarity as the relatedness score and
split them into 100 equal size subsets, and represent each subset
as the average scores. The scatter plots between relatedness and
common user ratio sharing ratio on three datasets are shown in
Figure 6. We also draw a regression line and compute the Pearson
correlation coefficient 𝑝 for each dataset. We observe an obvious
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Figure 6: Common user ratio w.r.t relatedness of group pairs
based on group embeddings.

overall tendency that the common user ratio increases with the
growth of relatedness. This tendency indicates that two groups
sharing more common members have higher relatedness based
on their embeddings, which justifies the efficacy of hypergraph
learning in modeling group representations.

5.6 Cold-start Group Identification
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Figure 7: Cold-start performance of different methods. The
background histograms denote the number of user-group
interactions left in the training set with different thresholds.
The solid lines indicate the performances of different meth-
ods with respect to different thresholds.

As shown in Table 1, many users have few group interactions,
and the cold-start issue in GI task is severe. Hence, we conduct a
detailed analysis regarding the ability of GTGS to tackle cold-start
group recommendation. We randomly remove some user-group
edges for each user in the training set such that the number of neigh-
bor groups of each user is no greater than a threshold 𝑘 . For com-
parison, we choose SGL, ENMF, and HGNN+ as the three baseline

models, and perform the experiments with threshold 𝑘 ∈ {1, 2, 3, 4}.
The threshold indicates the maximum number of groups per user.
The results are shown in Figure 7. We report the Recall performance
with respect to different thresholds as the solid line and the number
of user-group interactions in the background histograms. First, We
observe that GTGS as the method leveraging user’s item prefer-
ences for GI task significantly outperforms SGL and ENMF as the
bipartite user-group recommendation models. The reason is that
GTGS can leverage both the item and group interactions to learn
node embeddings. Despite the few group participation of users,
item interactions complement the cold-start issue. Even if only one
user-group edge is left, GTGS is able to achieve outstanding perfor-
mance in Steam and Beibei datasets. Secondly, although HGNN+
also utilizes hypergraph learning to model user-group relations
with user-item relations, it ignores the consistency between users’
preferences for items and groups. Thus it relies on user-group edges
more heavily and still performs worse than GTGS in Beibei dataset
with sparse user-item interactions.

Additionally, we observe that sometimes GTGS even performs
better with fewer user-group edges, such as 𝑘 = 1 in Steam dataset.
We hypothesize that when the number of groups per user is few,
GTGS can well characterize the group interests of users from their
item interactions. Therefore, it verifies the GTGS is a better frame-
work to comprehensively integrate item and group information for
users and can successfully complete the GI task.

6 CONCLUSION
In this paper, we propose a novel framework GTGS for GI task.
GTGS leverages hyperedges to express the union semantics in
users and groups for recommendation. A THC layer is devised
to transmit information on members’ item preferences to groups,
such that users’ interests in items serve as prior knowledge during
group identification. In addition, CSSL is leveraged to guarantee
the intrinsic consistency between item and group preferences for
each user, and group-based regularization is used to enhance the
distinction among group representations. We conduct extensive
experiments and detailed analyses on three datasets to verify the
effectiveness of GTGS. In the future, we may explore how to design
other variants of transition layers in THC for the transition of prior
knowledge, so that we can improve the functionality of THC layers.
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